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1. BIG-BANG COSMOLOGY

Revised September 2011 by K.A. Olive (University of Minnesota) and
J.A. Peacock (University of Edinburgh).

1.1. Introduction to Standard Big-Bang Model

The observed expansion of the Universe [1,2,3] is a natural (almost
inevitable) result of any homogeneous and isotropic cosmological model
based on general relativity. In order to account for the possibility that
the abundances of the elements had a cosmological origin, Alpher and
Herman proposed that the early Universe which was once very hot
and dense (enough so as to allow for the nucleosynthetic processing
of hydrogen), and has expanded and cooled to its present state [4,5].
In 1948, Alpher and Herman predicted that a direct consequence of
this model is the presence of a relic background radiation with a
temperature of order a few K [6,7]. It was the observation of the
3 K background radiation that singled out the Big-Bang model as
the prime candidate to describe our Universe. Subsequent work on
Big-Bang nucleosynthesis further confirmed the necessity of our hot
and dense past. These relativistic cosmological models face severe
problems with their initial conditions, to which the best modern
solution is inflationary cosmology.

1.1.1. The Robertson-Walker Universe:

The observed homogeneity and isotropy enable us to describe
the overall geometry and evolution of the Universe in terms of two
cosmological parameters accounting for the spatial curvature and
the overall expansion (or contraction) of the Universe. These two
quantities appear in the most general expression for a space-time
metric which has a (3D) maximally symmetric subspace of a 4D
space-time, known as the Robertson-Walker metric:

ds2 = dt2 − R2 (t)

[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

. (1.1)

Note that we adopt c = 1 throughout. By rescaling the radial
coordinate, we can choose the curvature constant k to take only the
discrete values +1, −1, or 0 corresponding to closed, open, or spatially
flat geometries.

1.1.2. The redshift:

The cosmological redshift is a direct consequence of the Hubble
expansion, determined by R(t). A local observer detecting light from a
distant emitter sees a redshift in frequency. We can define the redshift
as

z ≡ ν1 − ν2

ν2
≃ v12

c
, (1.3)

where ν1 is the frequency of the emitted light, ν2 is the observed
frequency and v12 is the relative velocity between the emitter and the
observer. While the definition, z = (ν1 − ν2)/ν2 is valid on all distance
scales, relating the redshift to the relative velocity in this simple way
is only true on small scales (i.e., less than cosmological scales) such
that the expansion velocity is non-relativistic. For light signals, we
can use the metric given by Eq. (1.1) and ds2 = 0 to write

1 + z =
ν1

ν2
=

R2

R1
. (1.5)

This result does not depend on the non-relativistic approximation.
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1.1.3. The Friedmann-Lemâıtre equations of motion:

The cosmological equations of motion are derived from Einstein’s
equations

Rµν − 1
2gµνR = 8πGNTµν + Λgµν . (1.6)

Gliner [17] and Zeldovich [18] have pioneered the modern view, in
which the Λ term is taken to the rhs and interpreted as an effective
energy–momentum tensor Tµν for the vacuum of Λgµν/8πGN. It is
common to assume that the matter content of the Universe is a perfect
fluid, for which

Tµν = −pgµν + (p + ρ)uµuν , (1.7)

where gµν is the space-time metric described by Eq. (1.1), p is the
isotropic pressure, ρ is the energy density and u = (1, 0, 0, 0) is
the velocity vector for the isotropic fluid in co-moving coordinates.
With the perfect fluid source, Einstein’s equations lead to the
Friedmann-Lemâıtre equations

H2 ≡
(

Ṙ

R

)2

=
8π GN ρ

3
− k

R2 +
Λ

3
, (1.8)

and
R̈

R
=

Λ

3
− 4πGN

3
(ρ + 3p) , (1.9)

where H(t) is the Hubble parameter and Λ is the cosmological
constant. The first of these is sometimes called the Friedmann
equation. Energy conservation via T

µν
;µ = 0, leads to a third useful

equation
ρ̇ = −3H (ρ + p) . (1.10)

Eq. (1.10) can also be simply derived as a consequence of the first law
of thermodynamics. For Λ = 0, it is clear that the Universe must be
expanding or contracting.

1.1.4. Definition of cosmological parameters:

The Friedmann equation can be used to define a critical density
such that k = 0 when Λ = 0,

ρc ≡ 3H2

8π GN

= 1.88 × 10−26 h2 kg m−3

= 1.05 × 10−5 h2 GeV cm−3 ,

(1.11)

where the scaled Hubble parameter, h, is defined by

H ≡ 100 h km s−1 Mpc−1

⇒ H−1 = 9.78 h−1 Gyr

= 2998 h−1 Mpc .

(1.12)

The cosmological density parameter Ωtot is defined as the energy
density relative to the critical density,

Ωtot = ρ/ρc . (1.13)
Note that one can now rewrite the Friedmann equation as

k/R2 = H2 (Ωtot − 1) . (1.14)

From Eq. (1.14), one can see that when Ωtot > 1, k = +1 and the
Universe is closed, when Ωtot < 1, k = −1 and the Universe is open,
and when Ωtot = 1, k = 0, and the Universe is spatially flat.
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It is often necessary to distinguish different contributions to
the density. It is therefore convenient to define present-day density
parameters for pressureless matter (Ωm) and relativistic particles (Ωr),
plus the quantity ΩΛ = Λ/3H2. In more general models, we may wish
to drop the assumption that the vacuum energy density is constant,
and we therefore denote the present-day density parameter of the
vacuum by Ωv. The Friedmann equation then becomes

k/R2
0 = H2

0 (Ωm + Ωr + Ωv − 1) , (1.15)

where the subscript 0 indicates present-day values. Thus, it is the
sum of the densities in matter, relativistic particles, and vacuum that
determines the overall sign of the curvature. Note that the quantity
−k/R2

0H
2
0 is sometimes (unfortunately) referred to as Ωk.

1.1.5. Standard Model solutions:

During inflation and again today the expansion rate for the Universe
is accelerating, and domination by a cosmological constant or some
other form of dark energy should be considered.

Let us first assume a general equation of state parameter for a
single component, w = p/ρ which is constant. In this case, Eq. (1.10)

can be written as ρ̇ = −3(1 + w)ρṘ/R and is easily integrated to yield

ρ ∝ R−3(1+w) . (1.16)
Note that at early times when R is small, k/R2 in the Friedmann
equation can be neglected so long as w > −1/3. Curvature domination
occurs at rather late times (if a cosmological constant term does not
dominate sooner). For w 6= −1,

R (t) ∝ t2/[3(1+w)] . (1.17)

1.1.5.2. A Radiation-dominated Universe:

In the early hot and dense Universe, it is appropriate to assume an
equation of state corresponding to a gas of radiation (or relativistic
particles) for which w = 1/3. In this case, Eq. (1.16) becomes
ρ ∝ R−4. Similarly, one can substitute w = 1/3 into Eq. (1.17) to
obtain

R (t) ∝ t1/2 ; H = 1/2t . (1.18)

1.1.5.3. A Matter-dominated Universe:

Non-relativistic matter eventually dominates the energy density
over radiation. A pressureless gas (w = 0) leads to the expected
dependence ρ ∝ R−3, and, if k = 0, we get

R (t) ∝ t2/3 ; H = 2/3t . (1.19)

If there is a dominant source of vacuum energy, acting as a
cosmological constant with equation of state w = −1. This leads to
an exponential expansion of the Universe

R (t) ∝ e
√

Λ/3t . (1.20)
The equation of state of the vacuum need not be the w = −1 of Λ,
and may not even be constant [19,20,21]. There is now much interest
in the more general possibility of a dynamically evolving vacuum
energy, for which the name ‘dark energy’ has become commonly
used. A variety of techniques exist whereby the vacuum density as
a function of time may be measured, usually expressed as the value
of w as a function of epoch [22,23]. The best current measurement
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4 1. Big-Bang cosmology

for the equation of state (assumed constant, but without assuming
zero curvature) is w = −1.00± 0.06 [24]. Unless stated otherwise, we
will assume that the vacuum energy is a cosmological constant with
w = −1 exactly.

The presence of vacuum energy can dramatically alter the fate of
the Universe. For example, if Λ < 0, the Universe will eventually
recollapse independent of the sign of k. For large values of Λ > 0
(larger than the Einstein static value needed to halt any cosmological
expansion or contraction), even a closed Universe will expand forever.
One way to quantify this is the deceleration parameter, q0, defined as

q0 = − RR̈

Ṙ2

∣

∣

∣

∣

∣

0

=
1

2
Ωm + Ωr +

(1 + 3w)

2
Ωv . (1.21)

This equation shows us that w < −1/3 for the vacuum may lead to
an accelerating expansion. Current data indicate that vacuum energy
is indeed the largest contributor to the cosmological density budget,
with Ωv = 0.73 ± 0.03 and Ωm = 0.27 ± 0.03 if k = 0 is assumed
(7-year mean WMAP) [24].

The existence of this constituent is without doubt the greatest
puzzle raised by the current cosmological model; the final section of
this review discusses some of the ways in which the vacuum-energy
problem is being addressed.

1.2. Introduction to Observational Cosmology

1.2.1. Fluxes, luminosities, and distances:

The key quantities for observational cosmology can be deduced
quite directly from the metric.

(1) The proper transverse size of an object seen by us to subtend an
angle dψ is its comoving size dψ r times the scale factor at the time of
emission:

dℓ = dψ R0r/ (1 + z) . (1.22)

(2) The apparent flux density of an object is deduced by allowing
its photons to flow through a sphere of current radius R0r; but photon
energies and arrival rates are redshifted, and the bandwidth dν is
reduced. These relations lead to the following common definitions:

angular-diameter distance: DA = (1 + z)−1 R0r

luminosity distance: DL = (1 + z) R0r .
(1.24)

These distance-redshift relations are expressed in terms of
observables by using the equation of a null radial geodesic plus the
Friedmann equation:

R0

R(t)
dt =

1

H (z)
dz =

1

H0

[

(1 − Ωm − Ωv − Ωr) (1 + z)2

+ Ωv (1 + z)3+3w + Ωm (1 + z)3 + Ωr (1 + z)4
]−1/2

dz .

(1.25)
The main scale for the distance here is the Hubble length, 1/H0.

1.2.2. Distance data and geometrical tests of cosmology:

In order to confront these theoretical predictions with data, we have
to bridge the divide between two extremes. Nearby objects may have
their distances measured quite easily, but their radial velocities are
dominated by deviations from the ideal Hubble flow, which typically
have a magnitude of several hundred km s−1. On the other hand,
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objects at redshifts z >∼ 0.01 will have observed recessional velocities
that differ from their ideal values by <∼ 10%, but absolute distances are
much harder to supply in this case. The traditional solution to this
problem is the construction of the distance ladder: an interlocking set
of methods for obtaining relative distances between various classes of
object, which begins with absolute distances at the 10 to 100 pc level,
and terminates with galaxies at significant redshifts. This is reviewed
in the review on Cosmological Parameters—Sec. 23 of this Review.

By far the most exciting development in this area has been the use
of type Ia Supernovae (SNe), which now allow measurement of relative
distances with 5% precision.

In combination with Cepheid data from the HST and a direct
geometrical distance to the maser galaxy NGC4258, SNe results
extend the distance ladder to the point where deviations from uniform
expansion are negligible, leading to the best existing direct value for
H0: 73.8 ± 2.4 km s−1Mpc−1 [25]. Better still, the analysis of high-z
SNe has allowed the first meaningful test of cosmological geometry to
be carried out.

1.2.3. Age of the Universe:

The dynamical result for the age of the Universe may be written as

H0t0 =

∫ ∞

0

dz

(1 + z)
[

(1 + z)2 (1 + Ωmz) − z (2 + z)Ωv

]1/2
, (1.28)

where we have neglected Ωr and chosen w = −1. Over the range
of interest (0.1 <∼ Ωm <∼ 1, |Ωv| <∼ 1), this exact answer may be

approximated to a few % accuracy by

H0t0 ≃ 2
3 (0.7Ωm + 0.3 − 0.3Ωv)−0.3 . (1.29)

For the special case that Ωm + Ωv = 1, the integral in Eq. (1.28) can
be expressed analytically as

H0t0 =
2

3
√

Ωv
ln

1 +
√

Ωv√
1 − Ωv

(Ωm < 1) . (1.30)

The present consensus favors ages for the oldest clusters of about
12 Gyr [38,39].

These methods are all consistent with the age deduced from
studies of structure formation, using the microwave background and
large-scale structure: t0 = 13.77 ± 0.13 Gyr [24], where the extra
accuracy comes at the price of assuming the Cold Dark Matter model
to be true.

1.3. The Hot Thermal Universe

1.3.1. Thermodynamics of the early Universe:

Through much of the radiation-dominated period, thermal
equilibrium is established by the rapid rate of particle interactions
relative to the expansion rate of the Universe. In equilibrium, it is
straightforward to compute the thermodynamic quantities, ρ, p, and
the entropy density, s.

In the Standard Model, a chemical potential is often associated
with baryon number, and since the net baryon density relative to
the photon density is known to be very small (of order 10−10),
we can neglect any such chemical potential when computing total
thermodynamic quantities.
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For photons, we have (in units where ~ = kB = 1)

ργ =
π2

15
T 4 ; pγ =

1

3
ργ ; sγ =

4ργ

3T
; nγ =

2ζ (3)

π2
T 3 . (1.39)

Eq. (1.10) can be converted into an equation for entropy conservation,

d
(

sR3
)

/dt = 0 . (1.40)

For radiation, this corresponds to the relationship between expansion
and cooling, T ∝ R−1 in an adiabatically expanding universe. Note
also that both s and nγ scale as T 3.

1.3.2. Radiation content of the Early Universe:

At the very high temperatures associated with the early Universe,
massive particles are pair produced, and are part of the thermal bath.
If for a given particle species i we have T ≫ mi, then we can neglect
the mass and the thermodynamic quantities are easily computed. In
general, we can approximate the energy density (at high temperatures)
by including only those particles with mi ≪ T . In this case, we have

ρ =

(

∑

B

gB +
7

8

∑

F

gF

)

π2

30
T 4 ≡ π2

30
N (T ) T 4 , (1.41)

where gB(F ) is the number of degrees of freedom of each boson

(fermion) and the sum runs over all boson and fermion states with
m ≪ T . Eq. (1.41) defines the effective number of degrees of freedom,
N(T ), by taking into account new particle degrees of freedom as the
temperature is raised.

The value of N(T ) at any given temperature depends on the
particle physics model. In the standard SU(3) × SU(2) × U(1) model,
we can specify N(T ) up to temperatures of O(100) GeV. The change
in N (ignoring mass effects) can be seen in the table below. At higher
temperatures, N(T ) will be model-dependent.

Temperature New Particles 4N(T )

T < me γ’s + ν’s 29
me < T < mµ e± 43

mµ < T < mπ µ± 57

mπ < T < T
†

c π’s 69
Tc < T < mstrange π’s + u, ū, d, d̄ + gluons 205
ms < T < mcharm s, s̄ 247
mc < T < mτ c, c̄ 289
mτ < T < mbottom τ± 303
mb < T < mW,Z b, b̄ 345

mW,Z < T < mHiggs W±, Z 381

mH < T < mtop H0 385
mt < T t, t̄ 427

†Tc corresponds to the confinement-deconfinement transition between
quarks and hadrons.

In the radiation-dominated epoch, Eq. (1.10) can be integrated
(neglecting the T -dependence of N) giving us a relationship between
the age of the Universe and its temperature

t =

(

90

32π3GNN (T )

)1/2

T−2 . (1.42)
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Put into a more convenient form

t T 2
MeV = 2.4 [N (T )]−1/2 , (1.43)

where t is measured in seconds and TMeV in units of MeV.

1.3.7. Nucleosynthesis:

An essential element of the standard cosmological model is Big-Bang
nucleosynthesis (BBN), the theory which predicts the abundances of
the light element isotopes D, 3He, 4He, and 7Li. Nucleosynthesis takes
place at a temperature scale of order 1 MeV. The nuclear processes
lead primarily to 4He, with a primordial mass fraction of about 25%.
Lesser amounts of the other light elements are produced: about 10−5

of D and 3He and about 10−10 of 7Li by number relative to H.
The abundances of the light elements depend almost solely on one
key parameter, the baryon-to-photon ratio, η. The nucleosynthesis
predictions can be compared with observational determinations of the
abundances of the light elements. Consistency between theory and
observations leads to a conservative range of

5.1 × 10−10 < η < 6.5 × 10−10 . (1.53)
η is related to the fraction of Ω contained in baryons, Ωb

Ωb = 3.66 × 107η h−2 , (1.54)
or 1010η = 274Ωbh2.

1.4. The Universe at late times

We are beginning to inventory the composition of the Universe:

total: Ω = 1.0 ± 0.1 (from CMB anisotropy)

matter: Ωm = 0.2–0.5

CDM: ΩCDM = Ωm − Ωb

baryons: Ωb = 0.02–0.05

neutrinos: 0.003 <∼ Ων

energy: ΩE = 0.5–0.8

dark energy: Ωv ≈ ΩE

photons: Ωγ = 4.6 × 10−5

Further discussion and all references may be found in the full Review
of Particle Physics . The numbering of references and equations used
here corresponds to that version.
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